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THE COMPRESSIBLE LAMINAR BOUNDARY LAYER WITH HEAT TRANSFER AND ARBITRARY
- PRESSURE GRADIENT &3

By Crarence B. Comen and Err RESHOTEO

SUMMARY

An approximate method for the calculation of the com-
pressible laminar boundary layer with heat transfer and
arbitrary pressure gradient, based on Thwaites’ correlation
concept, 18 presented. The method results from the application
of Stewartson’s transformaiion to Prandtl’s equations, which
yields a nonlinear set of two first-order differential equations.
These equations are then expressed in terms of dimensionless
paramelers related to the wall shear, the surface heat transfer,
and the transformed free-stream velocity. Thwaites’ concept
of the unique interdependence of these parameters is assumed.
The evaluation of these quantities is then carried out by utilizing
exact solutions recently obtained.

With the resulting relations, methods are derived for the
caleulation of the two-dimensional and azially symmetric
laminar boundary layer with arbitrary free-stream velocity
distribution, Mach number, and surface temperature level.

The combined effect of heat transfer and pressure gradient
13 demonstrated by applying the method to calculate the char-
acleristics of the boundary layer on thin supersonic surfaces
- and in a highly cooled, convergent-divergent, axially symmetric
rocket nozzle.

INTRODUCTION

In recent years, with the advent of laminar airfoils and
with the observation of laminar boundary layers at Reynolds
numbers as high as 503X10° (ref. 2), the ability to reliably
estimate viscous flow and heat-transfer effects for a laminar
boundary layer has become increasingly important. More-
over, with high-altitude flight becoming more common, the
subsequent lower Reynolds numbers encountered should
more frequently produce a laminar boundary layer. Sta-
bility calculations based on the theory of Lees and Lin
(ref. 3) bave also emphasized the possibilities of maintaining
o laminar boundary layer through cooling of asrodynamic
surfaces. The effect of favorable pressure gradients in
increasing the stability of laminar® boundary layers may
also make solutions to the laminar problem applicable to
the design of nozzles and turbine blades.

Solutions of the laminar-boundary-layer equations that
include effects of compressibility, pressure gradient, and
heat transfer have been quite limited in number. Of the
exact solutions, most have restrictions of range or applica-
tion, or both. The solutions of references 4 and 5 are re-

stricted to zero pressure gradient, while those of reference 6
allow small pressure gradients. The developments of refer-
ence 7 are restricted to small heat transfer and low Mach
number. Solutions obtained by assuming that fluid proper-
ties are constant or that the Mach number is essentially zero
are obtained in references 8 to 10. Those solutions of
references 11 to 13 that are for a Prandtl number of 1 are
not restricted in range of compressibility, pressure gradient,
or heat transfer. However, they apply to specific types of
free-stream velocity distribution that are inappropriate for
general practical problems.

In 1921, von Kérmén (ref. 14) recognized that to solve the
gkin-friction problem it was not necessary to have the exact
and complicated solution, but that it would be quite satis-
factory to evaluate average quantities across the layer if
they could be related to the surface values. The concepts
of displacement and momentum thicknesses were introduced,
thus considerably simplifying the mathematics of the prob-
lem. With this integral method, if the form of the velocity
profile is related to a single parameter, & method of calculat-
ing the boundary layer is obtained. Pohlhausen (ref. 15)
carried out this method by postulating a quartic velocity
profile depending upon the local pressure gradient. A num-
ber of investigators have extended Pohlhausen’s method to
compressible flows over insulated surfaces.

With the presence of heat transfer at the surface, the com-
pressible problem becomes more complex. Kalikhman (ref.
16) defined certain heat-flow quantities analogous to the
displacement and momentum thicknesses and, in a manner
similar to Pohlhausen’s, developed a complex iterative
procedure for the solution of the general problem. More
recently, references 17 to 20 have further developed this
technique. The preceding methods are tedious, since they
require a solution of at least one ordinary differential equa-
tion for any particular problem.

Thwaites’ method (ref. 21) doés not require the solution of
ordinary differential equations. In that formulation, it is
suggested that the basic goal of an integral approach might
be achieved if the problem is considered as that of relating
the wall shear, its normal derivative at the wall, and the
form factor (ratio of displacement thickness) to one another
withoutspecifying a type of profile. To this end, nondimension-
al forms of these quantities were defined and were evaluated

I Suparsedes NAOA. TN 3328, ““The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient,” by Clarence B. Ochen and Elf Reshotko, 1055
2 The principal developments of this paper, which Is part of the doctoral dissertation of the sanior author (ref. 1), were carried out under the stimulus and guidance of Professor Luigi
Croceo and the sponsorship of the Daniel and Florence Guggenhelm Foundation. The final analysis and the computations were completed at the NACA Lewis laboratory.
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by examining exact solutions for the incompressible laminar
boundary layer. It developed that a nearly universal
relation existed between these quantities for favorable
pressure gradients, and for adverse pressure gradients
Thwaites selected s single representative relation. A unique
correlation was chosen that reduced the solution of an incom-
pressible problem to the evaluation of & single integral.?

Rott and Crabtree (ref. 23) recognized that, in the absence
of heat transfer and with a Prandtl number of 1, the Illing-
worth-Stewartson correlation between compressible and
incompressible boundary-layer solutions (ref. 24) could be
used to extend Thwaites’ method to include effects of
compressibility.

With the presence of heat transfer the application of
Stewartson’s transformation does not correlate a given com-
pressible problem to an equivalent incompressible one.
Thus, the universal relation previously described is not
adequate. Unfortunately, there is little possibility of
establishing a family of universal relations with, for example,
the wall temperature as the distinguishing parameter, since &
variety of exact solutions to this problem is not available.
However, one such set of relations may be obtained from the
solutions of references 11 to 13.

In the present paper, after formulation of & nonlinear
system of two first-order differential equations (with the
major restriction being a linear viscosity law), methods of
solution are developed depending on Thwaites’ concept of
universal functions. The functions used for this purpose
are evaluated from the solutions of reference 12 only.

BOUNDARY-LAYER EQUATIONS

The equations of the steady, two-dimensional compressible
laminar boundary layer for perfect fluids are

Continuity:
0 o)
55@w+5§@w=o 1)
Momentum:
du du  Oop, D/ Ou
et P oy &‘*‘a_y(“a_
¥))
2_,
oy
Energy:
Oh bh p. bh

(All symbols are defined in appendix A.)
The viscosity law to be assumed is

Pt @

Equation (4) is of the form taken by Chapman and Rubesin
(vef. 5), except that the reference conditions (i, %)) are free-
stream stagnation values, since, in the case of pressure
gradient, the local stream values are not constant along the

3 Other approaches, such as that of Young and Winterbottom (ref. 22), have resulted in
expressions for the momentum thickness stmilar to that of Thwaites. In that analyais,
however, the derivation was a modification of the Pohlhausen technique. The application
of a correlation concept was not proposed.
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flow. The constant \ is used to match the viscosity with
the Sutherland value at & desired location. If this location
is assumed to be the surface, the result is

k,.=Sutherland’s constant=198.6° R (for air)
Stewartson’s transformation.—The velocities in the equa-~
tions of motion (1) to (3) can be replaced through the
definition of & stream function:

where

‘I’y=%

(6)

Introducing the quantity A from equation (4), a slight modi-
fication of Stewartson’s transformation (ref. 24) may be
written:
X [3E g
@)
a’l P
=d
" aoJo Po 4
The transformed eoordinates are now represented by upper-
case letters (X, ¥), and the subscript e refers to local con-
ditions at the outer edge of the boundary layer (external).
The subscript 0 refers to free-stream stagnation values.
Applying equations (4) to (7) to the boundary-layer
equations (1) to (3) and assuming that Pr and ¢, are constant
(but not yet requiring that Pr=1) result in the following
system:

Ux+ V}'=0 (8)
UUx+ VUY': Ucch(l +S)+V0UY1' (9)
r
v—1
I M?
Syy 1—PT 2 ¢ U
USx+ VSY=V0 - T
Pr Pr 7—1 I:(U)’:In—
1+T M2
(10)

where the enthalpy term S is defined for convenience as

e
. S=p—1 11)

where %, is the local stagnation enthalpy. The stream
function has been replaced by the transformed velocities
(U, V) through the relations

U=yy
V=—yx

The resulting relation between the transformed and physical

(12)

longitudinal velocities is U=(;E .

(]
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The boundary conditions applicable to the system (8) to
(10) for a specified wall temperature are

U(X,0)=0 )

V(X,00=0

S(X,00=8,X)
lim S=0

Yoo

e

(13)

limU=U.(X)

Integral equations.—An alternate form of the momentum
equation may be obtained by subtracting the momentum
equation (9) from the product of the continuity equation
(8) and the quantity (U,—U). This results in

[U(Us— U)]X_I_ [V(Uc_ U)]Y+ Uax(Uo_ U)+
U0U4x8= —uUry (14)

If equation (14) is integrated with respect to ¥ between the
limits ¥Y=0 and Y=A, where A is a constant distance normal

to the surface sufficiently large thal the conditions S=0
and U=U, can both be satisfied, there results

L O UDFUT it =(Urrs (15)

where the transformed momentum thickness 6,. and the
transformed displacement thickness &% are defined as

wm BB
=[G Gr)

By carrying out the indicated differentiation, equation (15
can be put in the form

(16)

dbyr

Xt e E Wt ot)=g5 U)o - 7)

This equation has the form of the conventional Kérmén mo-
mentum integral.

It should be noted that because of Stewartson’s trans-
formation a simple relation exists between the parameter

0, and the actual physical momentum thickness 6. This
relation is
r+1
Dole, _ tc.)z(-:—l)
B—Poaog" =0, :. (18)

Following a procedure with the energy equation similar to
that for the momentum equation results in

g UYE"' P, (‘%) (19)

Where the convection thickness is defined by

s U
E=fo S ¥ (20)
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The method presented in this report uses exact solutions
to the boundary-layer equations including the energy equa-
tion. Since both the skin-friction and heat-transfer param-
eters from the exact solutions are correlated with a parameter
which is evaluated from only the momentum integral equa-
tion, it will not be necessary to use equations (19) and (20).

REDUCED BOUNDARY-LAYER EQUATIONS

At this stage, the relation governing the boundary-layer
development is equation (17), subject to the boundary condi-
tions (04)z-0=0 or (6.)sp, Wwhere the subscript sp indicates
stagnation-point values. The former condition on 6,, applies
when the boundary layer is initiated without a stagnation
point (such as in the case of a supersonic thin airfoil). The
value of (6,),, depends on the value of (U,,),, and on the
surface temperature. At a stagnation point, (8.).,=0,,.
Values of 8,, are presented in table I.

Before consideration of a solution that depends on a cor-
relation similar to that of Thwaites, it is expedient to trans-
form the preceding system of equations to a system involving
dimensionless parameters. The correlation concept will
then be introduced and methods of solution developed.

PARAMETRIC FORM

The dimensionless parameters, which are related to terms
appearing in equations (17) and (19), can be defined and
evaluated from the following expressions:

Shear parameter, or first-derivative parameter,

S AG s (by) @1)

Correlation number (rel&ted to pressure gradient), or second~

derivative parameter,
02
@@ e

Heat-transfer parameter, or third-derivative parameter,

=7 (57). = =[5 (D). e3)

In definitions (22) and (23), use is made of the following
relations, respectively:

oU
ch 63 0%7‘ ng L4
A Yo i Uc 1+Sw b

n=-—

l Ox
(57).= (1484 (24)
which is obtained from equation (9), and
08\ ___% (U
(5).- 75 (37). (25)

which is obtained by differentiating equation (9) with respect
to ¥ and evaluating the resulting expression at ¥Y=0

If equation (17) is multiplied by "U‘: there results

Dl | mam4-2(F) ] o

*
where H ,,=60—’ is the form factor for low-speed flow (M, =~0).
ir
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(a) Stagnation-point flow
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TABLE I.—INITIAL VALUES OF PARAMETERS

Cr+Rew Nu/+/Ree - U, t_-) H
S- (] ’_- l. *p
Pro=l Pr=1 Pr=0.7 Pr=0.7 Pr=1
®) (=) Pre=1
Two-dlmensional (8=1)

—-L0 30 1.21 ¢ ). 508 0.438 0.436 o —0.170 * 0. 400 o —0.425
-.8 c1.50 1.49 . 522 . 452 °,.012 °,384 «.031
—.4 o2 (4 2.00 °.546 474 o, 345 *.338 1,021
0 2.48 2.48 . 570 . 493 .648 L2092 2.218
1.0 3.47 3.54 .615 .533 1.388 177 . 860

Axially symmetric (8=1¢)

-1.0 L64 1.56 0. 700 Q. 807 0. 607 —0.0771 300 —0. 257
—.8 185 179 712 617 621 . 0576 280 .199
—.4 2.25 222 . 739 . .318 . 269 1.185
0 2.62 2.62 .763 . 662 . 569 . M8 2.208
1.0 3.49 3.55 . 809 .701 1.185 J194 6.012

TABLE7IIL—SUMMARY OF HEAT-TRANSFER AND WALL-

s Theso values are obtained whan eqs. (16) of ref. 12 are solved for Pr=0.7, M,=0.
b These values are obtained by multiplying the results for Pr=1 by (0.7) 84,
« Intarpolated values from solutions of ref. 12.

(b) Sharp edge or pointed body

Csr+/Rew

Nuf~+[Rew

Pr=1

Pr=0.7
®

Two-dimensional

0. 664

0.332

0.205

Axially symmetric

L.150

0.576

0.510

= These values are obtained by multiplylng
the results for Pr=1 by (0.3

SHEAR PARAMETERS

Sw n 1 N r Q&) Hy
Nu /rm
-1.0 0.1335 | 0O 1. 0845 0.0212 0 2,033
.1579 . 0329 1.1804 . 0307 L3381 1. 530
.1591 . 0396 1.1382 .0339 . 7939 1013
. 1257 . 1448 . 9504 . 0297 1.224 . 630
. 0907 .1748 . 7858 .0212 1.463 .404
. 0343 .2063 . 5500 . 00774 1.830 .134
0 .220 .440 2.000 ]
-—. 0897 L2459 .1793 | —.0188 2 347 —. 257
—. 2038 .2829 - - 2.837 —. 538
—0.8 0.1215 | O 1. 03056 0.0172 ] 2.240
.1304 L0312 1. 0606 . 0210 .3100 1.828
. . 0438 1.0400 .0216 L4194 1. 708
. .068]1 1.0185 . L6245 1. 501
1212 .0837 .8885 L0216 .7438 1.398
.1017 1214 .882 .0187 1.058 1.138
. .1936 . 5781 . 00842 1.712 L6092
220 .44 0 2. 000 .519
—. 0837 . 2678 .1676 | —.0138 2 599 .199
—. 2008 .3179 —.1332 | —.0813 3.263 -
—. 2522 . 3360 —. 2517 | —.0388 3.502 —. 166
—0.4 00399 |0 0. 96087 0. 00679 0 3. 041
L0894 . 0300 . 8968 . 00730 L2041 2.679
. 0820 . 0624 . 8510 . 00606 5775 2.399
. 06156 1210 . 7378 . 00554 1.074 2,034
220 . 440 2. 000 1. 556
—. 072 .3019 1442 | —.00573 3.042 1.185
—. 1733 .3924 —.1713 | —.0118 4.628 L7659
0 0.0881 |0 0.822 0 0 4. 032
. 0487 .1051 . 7068 0 . 9480 3.04
220 .440 [ 2. 000 2.501
—. 0602 .3220 L1232 ] 3.436 2.268
—. 8020 .3556 0 4.317 2 218
—.1002 .3808 —.0748 0 512 2.180
—.1004 .3802 —. 1040 0 5. 665 2,152
Lo 0.0417 |0 0.7280 |—0.00803 ] 6.723
. . 0204 . 09768 .48 | —. 00544 . 8056 5.671
1} .20 .440 0 2. 000 5.187
.30 —. 0334 .82 .lbgg . 00607 3.602 5.403
.50 —.0736 . 3384 .07 . 00588 4.315 6.012
1.00 —.0312 . 3066 0 . 00338 5. 644 7.850
L 50 —. 0188 . 2382 —.0114 . 00133 6. 662 11,
2.00 - . 1663 - . 00034 7.527
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Now, if definitions (21) and (22) are inserted, equation (26)
becomes

_v, d.fiz (UL.X>=2 (H o +2)+1] @7)

A similar procedure can be carried out with the energy
equation, although it is mot necessary for the caleculation
method herein presented.

CORRELATION IN TERMS OF n

If, in the definition of &% (eq. (16)), S is set equal to zero,
the form factor then becomes the same asg that of Thwaites
and equation (26) becomes Thwaites’ momentum equation.
If, in this case, physically valid relations H.(n) and I(n)
can be established, the equation can be integrated and the
problem is solved. The assumption of the form of the veloc-
ity profile serves this purpose, and the resultant procedure is
the well-known Pohlhausen technique. (Kalikhman (ref.
16) was the first to carry the same approach over to the case
of the thermal profile.) Thwaites used the more direct ap-
proach by determining whether universal relations H.(n)
and I(n) could possibly be established from the well-known
exact solutions of the boundary-layer problem. An exami-
nation of these solutions proved that for favorable pressure
gradients a single relation for each of these quantities could
be established with a fair degree of accuracy, but for adverse
pressure gradients the relations departed from each other
considerably, as indicated for I(n) in figure 1 (taken from

4 T
=] —Hartree (retZG%
— Ir.—'HDWOﬂh (refZ )
—77--Thwaltes (ref. 21 )
e /¥ Pahlhausen (method
Un.2 R/ o ret 19)
» ‘:\~.
E\.\\\~\.
e A NN [
o grodient gradient \ A
iz -08 04 0 04 08 12

n

Ficune 1.—Skin-friction correlation of Thwaites (ref. 21) for incom-
pressible flow over an insulated surface.

ref. 21). Since the correlation technique requires the selec-
tion of o single relation between all boundary-layer quanti-
ties regardless of the history of the development of the spe-
cific boundary layer under consideration, the assumption of
o single relation for all boundary layers is not exactly valid.
Thwaites chose a relation for I(n) that would match the
Howarth solution (ref. 25) at separation. The Pohlhausen
solution predicts separation to occur much later than any
of the other solutions in the sketch, while the Hartree solu-
tion (ref. 26) predicts separation to occur earlier than the
Howarth solution. Stewartson (ref. 24) has indicated that
under certain conditions Howarth's solution would predict
separation too late.

With the exception of the described differences in the
relation between boundary-layer quantities (due to the
selection of the solutions of ref. 12 for the evaluation of the
correlated quantities), the method of correlation to be
presented herein will contain as special cases the method of
Thwaites for incompressible flow and the results of Rott
and Crabtree for compressible flow over insulated surfaces.
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The concept of correlation is herein extended by the
following major assumption: For the compressible laminar
boundary layer with heat transfer across the surface, the
skin-friction and heat-transfer parameters / and » can be
correlated only in terms of the parameters n and S, derived
from the exact solutions of reference 12.

It is thus implied that the solutions of reference 12
adequately represent the general boundary layer, although
they were derived for Falkner-Skan type flow.

As in all first-order boundary-layer theories, the pressure
distribution (and consequently the external velocity dis-
tribution) is assumed to be known. Then the utility of the
correlation may be stated as follows: If n is known at a
given point on the surface, 8, (and hence 6) can immediately
be obtained from equation (22). If I(n) is a known function
for the specified wall temperature, the wall shear is im-
mediately obtainable from equation (21). Similarly, if
r{n) is known, the heat transfer can be found from equation
(23).

If the postulate of correlation in terms of n and S, is
admitted, equation (27) becomes

5 d (o R (28)
where
N@,Sp)=2{nH ++2)+1] (29)

This is the fundamental equation of the present method.
Tts solution, resulting in & determination of n(z), is the first
stage in solving for the boundary-layer characteristics.
Then the function I(n,S,) is used to determine the wall
shear, and the function r(n,S,) is used to determine the
heat transfer.

EVALUATION OF CORRELATION PARAMETERS

The quantities /, n, and r defined in equations (21) to
(23), as evaluated from the solutions of reference 12, are
listed in table II. An alternate parameter to » for the de-
termination of the heat transfer is the Reynolds analogy

GfR [
Nu

parameter, defined as ; relating the heat transfer to

the skin friction. Because this (arbitrarily chosen) parameter
is herein determined from solutions for a Prandtl number of
1.0, it will be denoted <%

Nu
II. Tt isrelated to » by

C’,Rew . 28 w’nl
(———Nu — (30)

Pral T

as it appears in table
Pral

The parameters ! and <% as functions of n

Pr=l

and S, are plotted against » in figures 2 and 3, respectively.
The solid portions of the curves represent the solutions of
reference 12. The reversal of the curves for S,=1.0 is
associated with the velocity overshoot phenomenon discussed
in reference 12.
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METHOD OF SOLUTION

The solution of equation (28) obviously depends on a
knowledge of the term N(n,S,). This quantity was evalu-
ated from equation (29) and the associated formulas for
l, n, and H,. The results are shown in figure 4. Itis to be
noted that the curve for S,=0 is nearly a straight line, and
for all negative values of S, the curves depart only slightly
from this condition except in the range near separation
where the curves become double-valued. For S, >0 (hot
wall) the curve is essentially straight except in the region of
strong favorable gradients.

The examination of these curves and of equation (28)
suggests two methods of determining the correlation number
n. The first method is that of solving equation (28) by
numerical integration. The necessary numerical procedure,
however, is tedious, since it involves integration of a first-
order nonlinear nonhomogeneous ordinary differential equa-
tion, Because a simpler method is available when the
surface is isothermal, no numerical integration procedure
will be presented here in detail. However, some integration
relations are stated in appendix B.

The second method, applicable when the surface tempera-~
ture is constant (or, presumably, nearly constant), will be
termed the “linear method.” This method uses the nearly
linear shape of the curves of NV against n for constant S.
It directly corresponds to the procedure of Thwaites for
incompressible flow and to that of Rott and Crabtree for
compressible flow over insulated surfaces. The curve of
N against n for a given S, is assumed represented by

Sw ||
12 L0
Va
y
. ~epl/
10 i /
1 .Q‘L = y|
5 —_—— Separuhon, [(a )' OJ ~4 //r
’ oA
7
8 /
AL
, of/1//
7/
24 J//
5
g
84
g /
£ "|_ Stagnation-point flow *;///
E 2| Axisymmetric closed body /
2 28 BT XY e
| Two-dimensiongl { 8= 1)~ Y VY
S ,/ / \\
‘J / N
o]
YIAL LA [ L=
l £ 1/ 4 T~ lo
- JSAMSET!
2 //// "}
AEAZ s caNaa:
-3 5B T
1 Favorable pressure gradient - Adverse pressure Tadiem-w
I N Y T T Y Y | R A |

“32 -28 24 -20 6 .12 -08 -04 O 04 08 12
Correlation number, 2

6 20

| Fiaure 4.—Correlation of dimensionless momentum equation.

N=A4+Bn . (31)

If equation (31) is inserted in equation (28), a simple
linear first-order equation results, which has for its solution

X
n=—AU;2U, f Ur-1dX 39)
0
If equation (32) is transformed to physical quantities by

using Stewartson’s transformation, there results for two-
dimensional flow

A e [ e (F) o
prlo \h o \Zo L
e

where K=23(z—:i), L is any fixed length, and the dimension-
less pressure gradient P’ is given by
L %% ZLT % L du,
Pi = u. & &9

The left member of equation (33) has been arranged in a
form convenient for later use.

The determination of the coeflicients A and B is as follows:
If the straight line (31) is chosen to pass through the correct

value of IV at zero pressure gradient (n=0), then A=0.44

independent of S,,. In this case, only B is affected by the
presence of heat transfer. Figure 5 shows the values of

16
14 /'
12
(1) Favorable pressure gradient
Two-dimensional -~
Axisymmetric S
closed body-~_
10 .
8 e ,/
8 A /
(2) Small pressure gradient, (Z—N) -~ /
N/ps0 h
/\\ /
N //
6 S
“~1(3)Adverse pressure
gradient
////
/
4/
2
-l0 -8 -6 5 B 1.0

-4 -2 o. 2 4
Enthalpy function at wall, 5,

Figure 5.—Variation of B for use in linear method of determining
correlation number.
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B(S,,) for the following choices of matching conditions:

(1) The line (31) goes through the point corresponding to
N=0 (u,=0) in order to match the conditions at a stagnation
point. Thus, for two-dimensional flow (N=0), B=
—0.44/n,,. .

(2) The line (31) coincides with the tangent to the N(n)
lines at n=0 (small pressure gradients).

(3) The line (31) is selected to give good over-all agree-
ment for unfavorable pressure gradients.

If a better match with the curves of figure 4 is desired in
calculating n for certain ranges of pressure gradient, &
tangent line to the curve of N against » may be chosen at a
desired value of n. For instance, in considering the flow in
the vicinity of a two-dimensional stagnation point with
S,=—0.8, the tangent line through N=0 has the coefficients
A=0.372, B=2.53. The value of B is quite sensitive to
the matching assumption, especially in the region Sx>0
(fig. 5). However, the final value of n(zx) is somewhat in-
sensitive to the value of B, since the terms involving B in
equation (33) appear both inside and outside the integral in
a compensating manner. The accuracy of the method de-
creases, of course, in regions where the plots of figure 4 have
large curvature.

The calculation procedure is as follows: Values of 4 and B
are chosen for use in equation (33) either from figure 5 or
from tangent-line considerations. The integration is then
performed by using a suitable integration rule and a proper
step size. It is recommended that the step size chosen be
as small as practicable in order to obtain results which are
reasonably smooth. In some cases (e. g., near the boundary-
layer origin) it may be advisable to perform the integration
by obtaining Taylor series expansions of the integrand in
the variable (z/L). Then the integration can be carried
out in closed form, corresponding effectively to zero step
size.

There are two possible starting conditions in & boundary-
layer calculation: (a) that of a sharp edge, that is, §=0,
n=0; or (b) the stagnation point, where U,=u,=0. In
using the linear method, the starting conditions are auto-
matically satisfied if the chosen line (31) goes through the
correct starting point N(n). Thus, if matching condition
(a) is used, both possible starting conditions can be satisfied,
since the corresponding line (31) passes through the curve
from the exact solutions at both n=0 (IN=0.44) and, for
the two-dimensional flow, at N=0 (n,,=—0.44/B). Values
of n for stagnation-point flow taken from figure 4 are shown
in figure 6.

The corresponding relations and procedure for axially
symmetric flow based on Mangler’s transformation (ref. 27)
are presented in appendix C.

It is sometimes helpful to have an analytical expression
for the initial variation of correlation number as a check on
the numerical calculations. The initial variation of n with
z for the various starting conditions, as represented by the

derivative (%L) » i8 discussed in appendix D.
E 21
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Figure 6.—Effect of wall temperature on correlation number for
various pressure gradients,

BOUNDARY-LAYER CHARACTERISTICS

Once the correlation number = is determined as a function
from figures

Prml

2 and 3, respectively. Then, the local skin-friction coefficient

and heat transfer are easily calculated from the following

relations, which apply to both two-dimensional and axially

symmetric flows:

e, . . ¢, O,Re,
of z, it is possible to obtain [ and <—Z\7u_

)
From the definitions Cy= Nu= ; : £,

L4

1
§ Pwug

and from equations (21) and (22), it follows that

e UL
£ ) Rew
Vo

Cyv Re,=21 (38)

It may be noted that, at a stagnation point, equation (35)
reduces to )

CivRe.= & (36)

Once C,is determined, the heat transfer may be calculated
from curves of the Reynolds analogy parameter against corre-
lation number of figure 3, by using the relation

Nu _ Of'\/RCw (37\

VRe, (Crfies
N'u Presl
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In utilizing equations (35) to (37), it is useful to have the
initial values of the parameters. These values are listed in
table I.

The calculations thus far have been for Pr=1.0. The
effect of Prandtl number on skin friction is small and is there-
fore usually neglected. It can be seen from table I that, for
stagnation-point flow, the maximum difference in the quan-
tity C,+/Re,, between solutions for Pr=1.0 and Pr=0.7 is
about 7 percent. With regard to heat transfer, Tifford and
Chu (ref. 28) have found, from solutions with constant fluid
properties, that the effect of Prandtl number on heat transfer

by (Pr)-.
Prm1l
Using this approximation, equation (37) becomes

can be accounted for by multiplying (\f;i)
Co,

Moy olRe 8

Pr=1

1[ng (0]R8w
Nu

Values of a suggested in reference 28 are as follows: For
small pressure gradients, a=%; for large adverse pressure
gradients, a=1J; and for extremely favorable gradients, a=¥.
Squire (vef. 29) has indicated that «=0.4 is adequate for
stagnation-point flows. Recently obtained solutions (vef. 30)
of equations (16) of reference 12 for $=1, Pr=0.7, and
M,~ = show that this type of correction may be adequate
for all compressible boundary-layer calculations.

It should be noted that, in the definition of Nusselt
number, the temperature difference in the denominator was
assumed to be (fow—tw»). Since for Pr=1 the recovery
temperature is ¢, the present calculations (based on those of
ref. 12) can give no indication of the adiabatic wall tempera-
ture for Pr>£1. For a first approximation, it may be reason-
able to calculate #,, by using a temperature recovery factor
of (Pr)V/2, This is the well-known expression for recovery
factor for the case of high-speed flow with zero pressure
gradient. The adequacy of its application to high-speed
flows with large pressure gradients is not well established.

The physical momentum thickness is determined from

z
A n
2 \Be=L z (39)
toy/ prlo
Le
The displacement thickness §* may be calculated by using
the following simple expression for the ratio of displacement

thickness to momentum thickness:
o* —1
H=3=H,+1 5= MYH,+1) (40)

In reference 23, this expression was derived for flows over
insulated surfaces with Pr=1. Equation (40) is valid for
noninsulated surfaces as well. The dependence of H,, upon
wall temperature and = is presented in figure 7. With large
amounts of cooling in favorable-pressure-gradient flows, it is
seen that negative form factors (and hence negative dis-
placement, thicknesses) result. This occurs because the sur-
face cooling produces an increase in density near the wall, so
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Ficure 7.—Form-factor correlation.

that there is more mass flow per unit flow area within the
boundary layer than in the external flow.

The over-all thickness § of a boundary layer calculated
from exact solutions is & quantity not uniquely defined. Its

value depends on the value of the velocity ratio % that is

chosen to represent the outer edge of the boundary layer.
However, for a given value of the velocity ratio (less than 1)
there is a single value for thickness. The ratio of this over-all
thickness to the momentum thickness is given by the expres-
sion
P L 1L MI(H,+1) (41)
ir

The quantity % is that for low-speed flow (34,=0) which
tr

has been evaluated from the solutions of reference 12 and is
presented in figure 8 as a function of correlation number

for £2—0.995.
U

The mass flow in the boundary layer is related to the differ-
ence (6—6*) and may be obtained by subtracting equation
(40) from equation (41), which finally results in

8
fo pudy g

ey _\olr

H,.)o (42)
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The quantity gﬂ—H « 18 5.35 for the flat plate and, as can
Vi

be seen from the information in figures 7 and 8, varies from
about 4.5 for adverse pressure gradients to about 6.5 for
favorable pressure gradients.

LIMITS DUE TO AVAILABLE EXACT SOLUTIONS

The curvesof figures2 and 3 are terminated at the boundary-
layer separation point on one end and at the value of the
correlation number n at the other end, which corresponds to
the most favorable pressure gradient that can be represented
by the Falkner-Skan type solutions of reference 12. How-
ever, one may conceive a flow that contains values of 7 more
negative than the latter limit. For example, if a boundary
layer is allowed to grow on a flat plate until the momentum
thickness has an arbitrary value and is then subjected to a
favorable pressure gradient (u.,>0), equation (22) shows
that » might be made arbitrarily negative. Similarly, large
negative values of n may arise if & strong favorable pressure
gradient is maintained for some distance along a surface,
such as in & nozzle. Under such circumstances it would be
necessary to extend the curves of figures 2, 3, and 7 in order
to use the correlation method presented herein. Such exten-
sion is not possible by means of Falkner-Skan type solutions.

It is thus apparent that there are types of problems for
which the presently available correlations are not adequate.
To establish correlations in that regime would require exact
boundary-layer solutions for large favorable pressure gra-
dients of a form different from that of reference 12. Such
solutions are not known to the suthors at this time. The
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extended portions of the curves in figures 2, 3, and 7 for
Sw=—0.8 were drawn to enable the completion of example
II in the following section. The adequacy of this extension
is not known.

EXAMPLES

An important test of the method developed is the com-
parison of the final results for practical problems with the
findings of other theories or with experimental results.

I. SUPERSONIC SURFACES

The linear method for determining the correlation number
n is applied to the calculation of skin friction and heat
transfer for the two supersonic surfaces at Mach number 3.0
calculated in reference 6. These surfaces are shown in

= .
: mﬂz%

|
x/L

F1gure 9.—Supersonic surfaces of example 1.

A comparison is made, in the following table, between the
results obtained by using the linear method and those ob-
tained by using Low’s perturbation method with Pr=0.72
(ref. 8). The comparison is made for & hot wall, an insulated
wall, and a cold wall at /L=1 (see fig. 9). A value of « of
1/3 was used in these calculations.

(CryRee) s (Nu//Rew) attm
Heat-transfer

Gradfent condition Linear Low Linear Low
method, Tof. 6), method, Ig-rcr. a),
Pr=i =0.72 | correo =072

for Pr

Favorable.| Cold wall (Buy=~—0.9)..] 0.680 0. 679 0.270 0.271
Insulated wall.... ... 877 Iy S EUIUI E

Hot wall (Sy=0.61)___ 1.031 1.048 . 284 318

Adverse__| Cold wall (Sy=—0.9) . 0. 845 Q. 661 0.320 0.307
Insulated wall....____. 408 PRy {: J AP SO

Hot wall (Sy=0.43).__ .258 . 386 274 & i

A comparison of values indicates agreement of skin frietion
within 2 percent in the case of a favorable pressure gradient.
For the adverse-pressure-gradient. cases, reasonable agreement
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is oblained for the cold wall, although for the insulated and
hot walls a large difference is obtained. This difference is
due essentially to the fact that, in the case of an adverse
pressure gradient, the solutions of Low (ref. 6), which re-
semble the series-type solution of Howarth (ref. 25), depart
from Falkner-Skan type solutions such as that of Hartree
(vef. 26) (e. g., fig. 1). An important consideration for the
case of the heated surface with an adverse pressure gradient
is that the flow is closer to separation than appears permissi-
ble for a theory based on small pressure gradients such as
that of reference 6; therefore, for this case the present calcu-
lation may be the more reliable. Some of the difference in
the preceding table may also be a Prandtl number effect.

Good agreement is also obtained for heat transfer except
for the case of the heated surface with favorable pressure
gradient. Some of that difference might also be a Prandtl
number effect.

II. AXISYMMETRIC CONVERGENT-DIVERGENT ROCKET NOZZLE

The second example, that of a rocket nozzle, is one involv-
ing both large pressure gradients and heat transfer. The
nozzle chosen is illustrated in figure 10. It has a 25° half-
angle convergent section and a 15° half-angle divergent
section. The combustion-chamber stagnation pressure is
assumed to be 500 pounds per square inch absolute, the
stagnation temperature is taken as 4000° R, and the Prandtl
number is assumed to be 0.78. The nozzle wall is assumed
cooled to a uniform temperature of 800° R, which corre-

sponds to S,=—0.8. For the assumed 3-inch throat di-
' I ,If- Assurned ;tugnu‘tion polini
p?= 3" radius
b/sq in. abs oo 3
fo =4000° R o3 ! :
y=1.3
Pr=078 X
5y =800° R
- t—t—t—
,—Exact solution - stagnation-point flow
X
T ,—lemng value of #» from
. \ Y exact solutions (S,=-08)
- \\ ,’I /—\\
c-3 T
2
E
% |
&5-4
s \ il
£
S \
-5 \
. \L
No;zle tivoat
1o 2 3 4 5 6

Distance along nozzle wall, x/0

F1gure 10.—Variation of correlation number in rocket nozzle.
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ameter, the rocket has a nominal thrust of 6550 pounds for
y=1.3. Local static conditions along the nozzle wall were
obtained using one-dimensional flow relations.

The calculation was performed by the linear method with
A=0.372 and B=2.53. In order to eliminate the effect
of step size in the initial portion of the integration, a series
expansion of the integrand was used for 0<(z/D)<0.5.
For (2/D)>>0.5, the step size taken was 0.1. The resulting
variation of n in the nozzle is also shown in figure 10. Itis
seen that, in a portion of the nozzle including the throat
(1.2<(2/D)<3.5),- values of n are obtained which require
use of an extended correlation curve as discussed earlier, in
order to calculate skin friction, heat transfer, and displace-
ment thickness. No extrapolation is needed to obtain
momentum thickness, since the momentum thickness is
related to » through equation (39).

The calculated local heat-transfer rates as well as displace-
ment and momentum thickness are shown in figure 11. It
is seen that large rates of cooling are required in the neighbor-

140 T T
Nozzle throat
IZG\
\\ /l \ o Extoci so!uhonu{‘orﬂ
. / agnation-poil ow
\ / \ _ Extended correlotions
— N / \ used
2 100 "
= VASH
o
= \
< /
I~ \
& 80 X
o \
T y \\
N \ \| _.--Present
2 60 v L method
2 I\
k-]
g . AN
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Nu 7N
=0305-1
20 VRew \\\
\
0
0024 T T
Dlsgiluwnam
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Q
£2 0016
o) ] |~
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g¢e e
2B E P g
% [e] - Cra—
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'00080 | 2 3 4q 5 6
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Fiaure 11.—Results of rocket-nozzle caleulations.
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hood of the stagnation point and the nozzle throat. If the
cooling were to become insufficient, these seem to be the most
likely locations of failire. The required local cooling rate
to maintain constant wall temperature decreases sherply
bevond the throat of the nozzle.

In the absence of more appropriate information, it has
been customary in recent years to use flat-plate heat-transfer
relations in estimating heat transfer in a nozzle. The use
of such a relation in the current problem (Nu/yRe,=0.305
for Pr=0.78) yields values indicated in figure 10. It is
seen that for this problem the flat-plate relation seriously
underestimates the amount of cooling required over a large
part of the nozzle. This illustrates the importance of con-
sidering the effects of pressure gradient on heat transfer.

The momentum thickness is seen to reach a minimum
value at the nozzle throat. The displacement thickness
is a small positive quantity at the stagnation point but is
negative for most of the convergent section as well as in
the vicinity of the throat.! The over-all thickness (not
shown on the figure) variesfrom6.1 to 7.7 times the momentum
thickness in going from the initial stagnation poiat to the
nozzle exit. -

The use of different values of A and B in performing the
numerical integration would have approximately the fol-
lowing effect: With the values A=0.44 and B=3.0 (from

fig. 5), the momentum thickness would be about 10 percent |

smaller in the vicinity of the throat than the valuesin figure 11
and would be within 5 percent of the presented values over
the rest of the nozzle. With A=0.335 and B=2.34, the
momentum thickness at the throat would be about 6 percent
larger than the value presented. The effects of varying

4This unusual result produces the Interesting possibflity that, for a rocket nozzle with
cooled walls and viscld flow, a mass discharge coefficlent based on throat area, generally
assumed to be less than 1 because of boundary-layer “blockage” at toe throat, may actually
exceed 1. A distinction exists betweea this phenomenon and that of negative momentum
thickness (refs. 1, 10, and 12) assoctated with velocity overshoot.
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A and B on skin friction and heat transfer would be less
than 3 percent at the throat.

CONCLUDING REMARKS

The application of Stewartson’s transformation to the
compressible laminar-boundary-layer equations with heat
transfer yielded a simple first-order system of ordinary
differential equations, the first of which is very similar to
the KarmAn momentum integral. Dimensionless shear and
heat-transfer parameters were defined. The assumption of
correlation of these parameters in terms of & momentum
parameter resulted in a complete system of relations for
calculating skin friction and heat transfer. Knowledge of
velocity or temperature profiles is not necessary in using

. this calculation method. Procedures for the calculation

of the longitudinal distribution of correlation number are
presented, which include as special cases the method of
Thwaites and that of Rott and Crabtree. The dimensionless
parameters introduced herein were evaluated from the exact
solutions of reference 12.

Calculations of an example involving small pressure
gradients have shown reasonable agreement between this
method and the perturbation method of reference 6 over
the same range of Mach number, pressure gradient, and
heat transfer.

The method is also applied to the calculation of heat
transfer and displacement thickness in & highly cooled,
convergent-divergent, axially symmetric rocket nozzle. The
results of this calculation show that high rates of heat transfer
are obtained at the initial stagnation poiat and at the throat
of the nozzle. Also indicated are negative displacement
thicknesses in the convergeut portion of the nozzle; these
occur because of the high density within the lower portions
of the cooled boundary layer.

Lewis Fricar PropuLsion LLABORATORY
NarioNaL ApvisorYy COMMITTEE FOR AERONAUTICS
CrLeveLAND, OuIo, February 1, 1965
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APPENDIX A
SYMBOLS
constant from N=A-Bn t static temperature
sonic velocity tow adiabatic wall temperature
constant from N=A+Bn U transformed longitudinal velocity, U=u@=¢y
local skin-friction coefficient, C, 21 . c . Qe
! P pguE i longitudinal velocity component
gpecific heat at constant pressure 14 transformed normal velocity, V=-—yx
nozzle-throat diameter v normal velocity component
A £
convection thickness, E=f Sgd? X transformed coordinate along surface, X= f )\%%dx
0 '3 0 0
form factor, H=5*/0 z coordinate along surface
M . v
physical form factor for M,~0, H, u=zi Y transformed normal coordinate, Y=% f ﬁdy
:r 0
enthalpy y normal coordinate
3v—1 a exponent of Prandtl number in Reynolds analogy
2(v—1) parameter
thermal conductivity . 2m
B ressure dient parameter, f=——
Sutherland’s constant P e P m—+1
arbitrary length v ratio of specific heats
. . 6, (D ) over-all thickness
dimensionless shear parameter, [= 7,(5%),, 5* displacement thickness
Mach number 0 momentum thickness
exponent from Fallkner-Skan external velocity distri- | N Y t0+kcu> ‘/E
bution U,= cxXm - (t/to) tw+k,, to
momentum parameter, N=2[n(H, ++2)+] i dynamic viscosity
x(ﬁ v kinemsatic viscosity, v=u/p
Nusselt number, NPT%’ P mass density
U,.6 o
correlation number, n= —%‘ T shear stress, 7= dy
0 .
L dp, ¥ stream function, eq. (6)
dimensionless pressure gradient, P’ =%% Subscripts:
ide boundary la
Prandtl number, PptCs e local flow ou’fs1de oundary layer (external)
) k 8 local stagnation value
static pressure b sp  stagnation point
radius of y etric Odqzm tr associated’ transformed quantity
Reynolds number, Re,— = w wall or surface value
t,[ 0/t 0 free-stream stagnation value
heat-transfer parameter, r=nf ?o-l:b_y (E):L’ 1 initial value

enthalpy function, S=hb—;-—1

A coordinate used as subscript denotes differentiation
with respect to the coordinate.
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APPENDIX B

NUMERICAL INTEGRATION METHOD

METHOD

The most direct method of solving equation (28) is by
numerical integration, using the calculated curves of N(n,Sy)
for determination of the right member.

An integration procedure may be simply indicated by
direct integration of equation (28). The resultant integral
equation can be written:

For two-dimensional flow,

olroa [ ]

For an axially symmetric closed body, through Mangler’s
transformation (ref. 26),

_ on X NR?
=—TF), T.

(B1)

dX (B2a)

Since the integrands contain N(n), which is unknown at
this point, no simple evaluation is possible. In fact, these
equations are actually only a condensed notation of the pro-
cedure to be followed. The integration must be carried out
piecemeal, alternating with determination of the left member
of the equation and iterating for accuracy.

The necessity of working with the transformed coordinates
can be eliminated by considering the Stewartson trans-
formation from U, to u,. For example, in physical coordi-
nates equation (B2a) becomes

 (u28) s

M, @ Do
L, Qe Pe

(B2b)
PI

where L is any fixed length, and the dimensionless pressure
gradient P’ is given by

pde L
pr__dr_p dz B3)
Pc'ug 7M3

Similarly, if the isentropic relation p/p"=constant is used

in equations (31) and (32) and if the Stewartson transfor-
mation is applied, there results:

For two-dimensional flow,

| f YD

P T

J (B4)

(z)

For an axially symmetric flow (closed body),

B evwa(3)
7@+ W oF

(B5)

—1
where K= 2(7_1)

INITIAL VALUES

When the numerical integration method is used, certain
considerations are necessary in order to start the solution
properly. There are two possible starting conditions:
(1) sharp edge or pointed body, where 6=0 and n=0, and
(2) stagnation point, where U,=u,=0.

In the case of a boundary layer starting from a stagnation
point, the initial value n; of 7 is determined from tho condi-
tion U,=0, Ug=constant in equation (28). For two-
dimensional stagnation-point flow, the Hartree pressure-
gradient parameter g is equal to 1.0. Since, for the Falknor-

206;” n, it is seen that
N=0 at a two-dimensional stagnation point. This fixes n
at the values shown in figure 6, which were obtained from
figure 4. For axisymmetric stagnation-point flow over a
closed body, B=1¥% (ref. 31), so that Ny=—2n,. The values of
n, for axially symmetric stagnation-point flow over a closed
body as obtained from figure 4 are also shown in figure 6.
For the stagnation-point flow over the blunt lip of an open
axisymmetric body, 7n,, can be shown to have the two-
dimensional value.

Skan type flow considered, N=
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APPENDIX C

LINEAR METHOD FOR AXISYMMETRIC FLOW

Tor axisymmetric flows, the following equation, which is
equivalent to equation (33), is obtained by application of the
transformation of Mangler (ref. 27):

prh _A< >—KM1—Bf G ) mesd(3) o

where R=R(x) is the radius of the body at station =z,

3y—1
K 2(7__1): and
Ld
pr— de
RV NIH

In evaluating the coefficients A and B of the straight line

N=A+Bn (31)

A may be chosen as 0.44 so that the line (31) passes through
the correct value of N at n=0. The choice of B may be
made so that the line (31) goes through the point where
N=—2n in order to match the conditions at an axisymmetric

In that event, B=— 044

stagnation point.

achieving better agreement with the curves of figure 3 in
certain ranges of pressure gradient, a tangent line to the
curve of N against » may be chosen as was indicated for
two-dimensional flow.

The three possible starting conditions are: (1) For a
pointed body, §=0, n=0. (2) For a stagnation point on a
closed body, U,=u,=0 so that N=—2n. Values of n,, for
this axisymmetric stagnation point are shown in figure 5 and
indicated in table II for S=%. (3) For a stagnation point
on the blunt lip of an open axisymmetric body, it can be
shown using the axisymmetric form of equation (28) that
N=0 so that n,, is that for two-dimensional flow.

APPENDIX D

INITIAL VARIATION OF CORRELATION NUMBER

Tt is sometimes helpful to have an analytical expression for
the initial variation of correlation number as a check on
the numerical calculations. The following expressions for

(% are determined from equation (28):
Tm0

TWO-DIMENSIONAL FLOW

Sharp edge:

o (e @)
(d.’B z=0 0.44- Ue >:l:n-0 ta z=0

Stagnation point (blunt body):

(D1)

D2)

(da: ’“0—1+ ‘Z\D (”"ﬂ:)m

AXISYMMETRIC FLOW

For axisymmetric flow the initial derivatives must be
evaluated from the following equation:

U, d /nR

(i) =Nms)

(D3)

Closed body.—
Pointed nose:

Us,
<(ix 2-0_—0 147 ( )2-0 O)I-O (D4)
Stagnation point (blunt nose):
Ty Uer, (Rn:>
(dx zm( 1+(dN> [ ( ) :: P (D5)
an /sy
Open body.—
Sharp lip:
(d.’t z-o_-—O 44( )z-o to)x-o (DG)
Stagnation point (blunt lip):
(D7)

(&) oy [ (59), = @)



972

1.

10.

11.

12.

13.

14,

15.

REPORT 1294—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REFERENCES

Cohen, Clarence B.: Similar Solutions for the Laminar Compres-
sible Boundary Layer with Heat Transfer and Pressure Gradient,
and Application to Integral Methods. Ph. D. Thesis, Princeton
Univ., 1954.

. Sternberg, Joseph: A Free-Flight Investigation of the Possibility of

High Reynolds Number Supersonic Laminar Boundary Layers.
Jour. Aero. Sci., vol. 19, no. 11, Nov. 1952, pp. 721-733.

. Lees, Lester, and Lin, Chia Chiao: Investigation of the Stability of

the Laminar Boundary Layer in a Compressible Fluid. NACA
TN 1115, 1946.

. Croceo, Luigi: The Laminar Boundary Layer in Gases. Rep.

CF-1038, Aerophys. Lab., North Am. Aviation, Inc., July 15,
1948. .

. Chapman, Dean R., and Rubesin, Morris W.: Temperature and

Velocity Profiles in the Compressible Laminar Boundary Layer
with Arbitrary Distribution of Surface Temperature. Jour.
Aero. Sci., vol. 16, no. 9, Sept. 1949, pp. 547-565.

. Low, George M.: The Compressible Laminar Boundary Layer with

Heat Transfer and Small Pressure Gradient. NACA TN 3028,

1953.

. Tani, Itiro: Further Studies of the Laminar Boundary Layer in

Compressible Fluids. Rep. of Aero. Res. Inst., vols. 22-23, no.
322, Tokyo Imperial Univ., Dec. 1944.

. Tifford, Arthur N.: The Thermodynamics of the Laminar Bound-
ary Layer of a Heated Body in a High-Speed Gas Flow Field.

Jour. Aero. Sci., vol. 12, no. 2, Apr. 1945, pp. 241-251.

. Levy, Solomon: Heat Transfer to Constant-Property Laminar

Boundary-Layer Flows with Power-Function Free-Stream
Velocity and Wall-Temperature Variation. Jour. Aero. Sci.,
vol. 19, no. 5, May 1952, pp. 341-348.

Brown, W. Bryon, and Donoughe, Patrick L.: Tables of Exact
Laminar-Boundary-Layer Solutions When the Wall is Porous
and the Fluid Properties are Variable. NACA TN 2479, 1951.

Levy, Solomon: Effect of Large Temperature Changes (Including
Viscous Heating) upon Laminar Boundary Layers with Variable
Free-Stream Velocity. Jour. Aero. Sci., vol. 21, no. 7, July 1954,
pp. 459474,

Cohen, Clarence B., and Reshotko, Eli: Similar Solutions for the
Compressible Laminar Boundary Layer with Heat Transfer and
Pressure Gradient. NACA Rep. 1293, 1956. (Supersedes
NACA TN 3325.)

Li, Ting-Yi, and Nagamatsu, Henry T.: Similar Solutions of Com-
pressible Boundary-Layer Equations. Jour. Aero. Sei., vol. 22,
no. 9, Sept. 1955, pp. 607-616.

von Kdrmdén, Th.: Uber laminare und turbulente Reibung.
Z. a. M. M., Bd. 1, Heft 4, Aug. 1921, pp. 233-252.

Pohlhausen, K.: Zur niherungsweisen Integration der Differen-
tialgleichung der laminaren Grenzschicht. Z. a. M. M., Bd. 1,
Heft 4, Aug. 1921, pp. 252-268.

16.

17.

18.

19.

20.

21.

22.

25.

26.

27,

29.

30.

31.

Kalikhman, L. E.: Heat Transmission in the Boundary Layer.
NACA TM 1229, 1949.

Ginzel, J.: Ein Pohlhausenverfahren zur Berechnung laminaror
kompressibler Grenzschichten an einer geheitzten Wand.
Z. a. M. M., Bd. 29, Heft 11/12, Nov./Dec. 1949, pp. 321~-337.

Morris, Deane N., and Smith, John W.: The Compressible Laminar
Boundary Layer with Arbitrary Pressure and Surface Tempera-
ture Gradients. Jour. Aero. Seci., vol. 20, no. 12, Dec. 19563,
pp- 8056-818.

Libby, Paul A., and Morduchow, Morris: Method for Calculation
of Compressible Laminar Boundary Layer with Axial Pressure
Gradient and Heat Transfer. NACA TN 3157, 1954.

Beckwith, Ivan E.: Heat Transfer and Skin Friction by an Integral
Method in the Compressible Laminar Boundary Layer with a
Streamwise Pressure Gradient. NACA TN 3005, 1953.

Thwaites, B.: Approximate Calculation of the Laminar Boundary
Layer. Aero. Quarterly, vol. 1, Nov. 1949, pp. 245-280.

Young, A. D., and Winterbottom, N. E.: Note on the Effoot of
Compressibility on the Profile Drag of Aerofoils at Subsonio
Mach Numbers in the Absence of Shock Waves. R. & M.
No. 2400, British A. R. C., May 1940.

. Rott, Nicholas, and Crabtree, L. F.: Simplified Laminar Boundary-

Layer Calculations for Badies of Revolution and for Yawed
Wings. Jour. Aero. Sci., vol. 19, no. 8, Aug. 1952, pp. 563-565.

Stewartson, K.: Correlated Incompressible and Compressible
Boundary Layers. Proc. Roy. Soc. (London), ser. A, vol. 200,
no. A1060, Dec. 22, 1949, pp. 84-100.

Howarth, L.: On the Solution of the Laminar Boundary Layor
Equations. Proc. Roy. Soc. (London), ser. A, vol. 164, no.
A919, Feb. 1938, pp. 547-579.

Hartree, D. R.: On an Equation Occurring in Falkner and 8kan’s
Approximate Treatment of the Equations of the Boundary
Layer. Proc. Cambridge Phil. Soc., vol. 33, pt. 2, Apr. 1937,
pp. 223-239.

Mangler, W.: Compressible Boundary Layers on Bodies of Revolu-
tion. VG 83, No. 47T, M. A. P. Volkenrode.

. Tifford, Arthur N., and Chu, S. T.: Heat Transfer in Laminar

Boundary Layers Subject to Surface Pressure and Temperaturo
Distributions. Proc. Second Midwestern Conf. on Fluid Mech.,
Ohio State Univ., Mar. 17-19, 1952, pp. 363-377.

Goldstein, S., ed.: Modern Developments in Fluid Dynamios.
Vol. 2. Clarendon Press (Oxford), 1938, pp. 631-632.

Reshotko, Eli, and Cohen, Clarence B.: Note on the Compressible
Laminar Boundary Layer with Heat Transfer and Pressuro
Gradient. Jour. Aero. Seci., vol. 22, no. 8, Aug. 1965, pp.
584-585.

Schlichting, Herman: Grenzschicht-Theorie.
G. Braun, Karlsruhe, 1951, pp. 110-115.

Verlag und Druck



